Flip Flops {Latch (NOR and NAND) }

Presented By:

Suraj Prakash

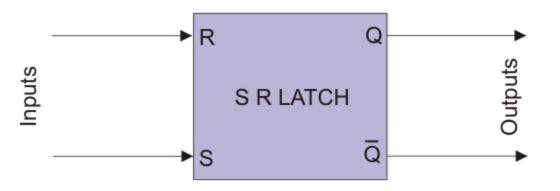
Asst. Professor

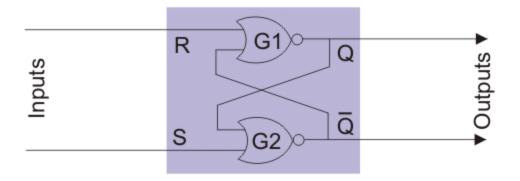
Outline

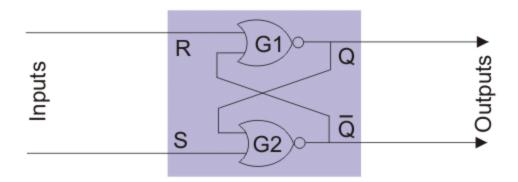
- > S-R Latch
- > NOR
- > NAND

S- R Latch

SR Flip-Flop

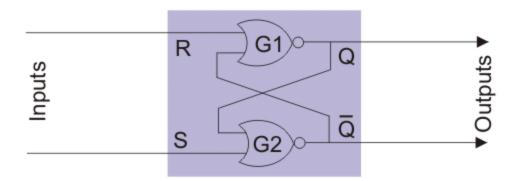

The **SR flip-flop**, also known as a *SR Latch*, can be considered as one of the most basic sequential logic circuit possible. This simple flip-flop is basically a one-bit memory *bistable* device.


It has two inputs S and R and two outputs Q and Q'. The state of this latch is determined by the condition of Q. If Q is 1 the latch is said to be SET and if Q is 0 the latch is said to be RESET. Then the SR description stands for "Set-Reset". This SR Latch or Flip flop can be designed either by two cross-coupled NAND gates or two-cross coupled NOR gates.


When we design this latch by using NOR gates, it will be an **active high S-R** latch. That means it is SET when S = 1.

When we design this latch by using NAND gates, it will be an **active low S-R** latch. That means it is SET when S = 0. SR Flip Flop is also called SET RESET Flip Flop.

NOR Gate S R Latch


In the above logic circuit if S = 1 and R = 0, Q becomes 1.

NOR gate always gives output 0 when at least one of the inputs is 1.

So when S is applied as 1 the output of gate G2 i.e. Q' is 0 irrespective of the condition of second input Q to the gate.

Now Q' is the input of gate G1 so both the inputs of G1 become 0 as R is already 0. So, the output of G1 is now 1.

So whatever may be the previous condition of Q, it always becomes Q = 1 and Q' = 0 when S = 1 and R = 0. This is called the SET condition of the latch.

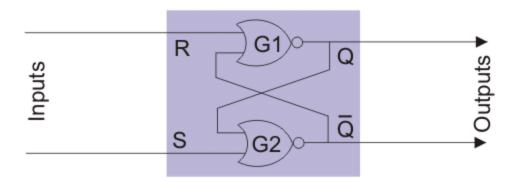


In the above logic circuit if S = 0 and R = 1, Q becomes 0.

As we already said, a NOR gate always gives output 0 when at least one of the inputs is 1.

So when R is applied as 1, the output of gate G1 i.e. Q is 0 irrespective of the condition of the second input Q' to the gate.

So, whatever may be the previous condition of Q, it always becomes 0 this 0 is then fed back to the input of gate G2. As here S is already 0, both inputs of G2 are 0. Hence the output of G2 i.e. Q' will be 1. So, Q = 0 and Q' = 1 when, S = 0 and R = 1. This is called the RESET condition of the latch.



In the above logic circuit if S = 0 and also R = 0, Q remains the same as it was. First suppose Q is previously 1.

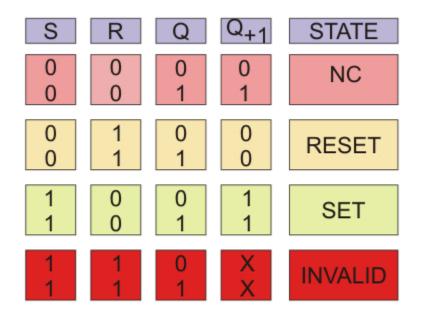
Now the inputs of G2 are 0 and 1 as S=0 and Q=1. So output of G2 i.e. Q' is 0. Now both inputs of G1 are 0 as R=0 and Q'=0. So the output of G1 i.e. Q is 1. Now suppose Q is previously 0.

Now both inputs of G2 are 0 and 1 as S = 0 and Q = 0. So the output of G2 i.e. Q' is 1.

Now the inputs of G1 are 0 and 1 as R=0 and Q'=1. So the output of G1 i.e. Q is 0. So it is proved that Q remains the same as it is when S=0 and also R=0 in SR latch.

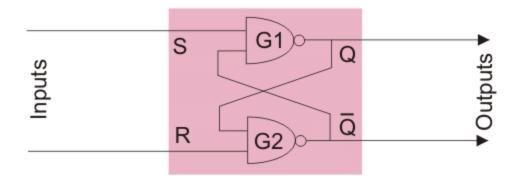
In the above logic circuit if S = 1 and also R = 1, the condition of Q is totally unpredictable. First suppose Q is previously 1.

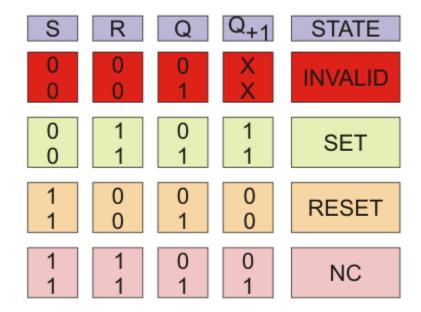
Now both inputs of G2 are 1 as S = 1 and Q = 1. So output of G2 i.e. Q' is 0.


Now the inputs of G1 are 1 and 0 as R = 1 and Q' = 0. So the output of G1 i.e. Q is 0. That means Q is changed.

Now Q is 0. So inputs of G2 are 1 and 0 as S = 1 and Q = 0. So the output of G2 i.e. Q' is 0. That means Q' is unchanged. Now the inputs of G1 are 1 and 0 as R = 1 and Q' = 0. So the output of G1 i.e. Q is 0. That means Q is unchanged.

So, when both S and R are 1, it becomes unpredictable whether the value of output Q will be changed or unchanged. This condition of SR latch normally avoided.


Truth Table of S R Latch


Q is previously state and Q+1 is current state.

There is another type of latch which is SET when, S = 0 (LOW), and this latch is known as Active Low SR Latch (NAND S R Latch).

NAND Gate S R Latch

